Infographic describing the research

A method for intelligent allocation of diagnostic testing by leveraging data from commercial wearable devices: a case study on COVID-19

Mass surveillance testing can help control outbreaks of infectious diseases such as COVID-19. However, diagnostic test shortages are prevalent globally and continue to occur in the US with the onset of new COVID-19 variants and emerging diseases like monkeypox, demonstrating an unprecedented need for improving our current methods for mass surveillance testing. By targeting surveillance…

Graphical abstract of study

Non-invasive wearables for remote monitoring of HbA1c and glucose variability: proof of concept

Diabetes prevalence continues to grow and there remains a significant diagnostic gap in one-third of the US population that has pre-diabetes. Innovative, practical strategies to improve monitoring of glycemic health are desperately needed. In this proof-of-concept study, we explore the relationship between non-invasive wearables and glycemic metrics and demonstrate the feasibility of using non-invasive wearables…

Infographic showing objectives of the research

Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches

Prediabetes affects one in three people and has a 10% annual conversion rate to type 2 diabetes without lifestyle or medical interventions. Management of glycemic health is essential to prevent progression to type 2 diabetes. However, there is currently no commercially-available and noninvasive method for monitoring glycemic health to aid in self-management of prediabetes. There…

Graphic showing weekday frequency of usage of smart devices.

Assessment of ownership of smart devices and the acceptability of digital health data sharing

Smart portable devices- smartphones and smartwatches- are rapidly being adopted by the general population, which has brought forward an opportunity to use the large volumes of physiological, behavioral, and activity data continuously being collected by these devices in naturalistic settings to perform research, monitor health, and track disease. While these data can serve to revolutionize…

Coronary angiogram showing vascular structure with marked regions.

Establishing the longitudinal hemodynamic mapping framework for wearable-driven coronary digital twins

Understanding the evolving nature of coronary hemodynamics is crucial for early disease detection and monitoring progression. We require digital twins that mimic a patient’s circulatory system by integrating continuous physiological data and computing hemodynamic patterns over months. Current models match clinical flow measurements but are limited to single heartbeats. To this end, we introduced the…

Publication icon

Cloud Computing to Enable Wearable-Driven Longitudinal Hemodynamic Maps

Tracking hemodynamic responses to treatment and stimuli over long periods remains a grand challenge. Moving from established single-heartbeat technology to longitudinal profiles would require continuous data describing how the patient’s state evolves, new methods to extend the temporal domain over which flow is sampled, and high-throughput computing resources. While personalized digital twins can accurately measure…