2023

Overview of chromatin organization

Theory of chromatin organization maintained by active loop extrusion

The active loop extrusion hypothesis proposes that chromatin threads through the cohesin protein complex into progressively larger loops until reaching specific boundary elements. We build upon this hypothesis and develop an analytical theory for active loop extrusion which predicts that loop formation probability is a nonmonotonic function of loop length and describes chromatin contact probabilities….

Comparison of SaLT&PepPr protein structure predictions with PPBS dataset models

SaLT&PepPr is an interface-predicting language model for designing peptide-guided protein degraders

Protein-protein interactions (PPIs) are critical for biological processes and predicting the sites of these interactions is useful for both computational and experimental applications. We present a Structure-agnostic Language Transformer and Peptide Prioritization (SaLT&PepPr) pipeline to predict interaction interfaces from a protein sequence alone for the subsequent generation of peptidic binding motifs. Our model fine-tunes the ESM-2 protein language model (pLM)…

Comparison of two methods for simulating blood flow in a cerebral artery.

Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts

Simulations of cancer cell transport require accurately modeling mm-scale and longer trajectories through a circulatory system containing trillions of deformable red blood cells, whose intercellular interactions require submicron fidelity. Using a hybrid CPU-GPU approach, we extend the advanced physics refinement (APR) method to couple a finely-resolved region of explicitly-modeled red blood cells to a coarsely-resolved…

Publication icon

Cloud Computing to Enable Wearable-Driven Longitudinal Hemodynamic Maps

Tracking hemodynamic responses to treatment and stimuli over long periods remains a grand challenge. Moving from established single-heartbeat technology to longitudinal profiles would require continuous data describing how the patient’s state evolves, new methods to extend the temporal domain over which flow is sampled, and high-throughput computing resources. While personalized digital twins can accurately measure…

Publication icon

Performance Evaluation of Heterogeneous GPU Programming Frameworks for Hemodynamic Simulations

Preparing for the deployment of large scientific and engineering codes on upcoming exascale systems with GPU-dense nodes is made challenging by the unprecedented diversity of device architectures and heterogeneous programming models. In this work, we evaluate the process of porting a massively parallel, fluid dynamics code written in CUDA to SYCL, HIP, and Kokkos with…

Arterial geometry of aorta

Optimizing Cloud Computing Resource Usage for Hemodynamic Simulation

Cloud computing resources are becoming an increasingly attractive option for simulation workflows but require users to assess a wider variety of hardware options and associated costs than required by traditional in-house hardware or fixed allocations at leadership computing facilities. The pay-as-you-go model used by cloud providers gives users the opportunity to make more nuanced cost-benefit…