Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis

Sayan Roychowdhury, Samreen T. Mahmud, Aristotle Martin, Peter Balogh, Daniel F. Puleri, John Gounley, Erik W. Draeger, Amanda Randles

Comparison of two methods for simulating blood flow in a cerebral artery.

Summary

Simulations of cancer cell transport require accurately modeling mm-scale and longer trajectories through a circulatory system containing trillions of deformable red blood cells, whose intercellular interactions require submicron fidelity. Using a hybrid CPU-GPU approach, we extend the advanced physics refinement (APR) method to couple a finely-resolved region of explicitly-modeled red blood cells to a coarsely-resolved bulk fluid domain. We further develop algorithms that: capture the dynamics at the interface of differing viscosities, maintain hematocrit within the cell-filled volume, and move the finely-resolved region and encapsulated cells while tracking an individual cancer cell. Comparison to a fully-resolved fluid-structure interaction model is presented for verification. Finally, we use the advanced APR method to simulate cancer cell transport over a mm-scale distance while maintaining a local region of RBCs, using a fraction of the computational power required to run a fully-resolved model.

Citation

Roychowdhury, Sayan, et al. “Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts.” Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2023.

BibTex

@inproceedings{roychowdhury2023enhancing, title={Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts}, author={Roychowdhury, Sayan and Mahmud, Samreen T and Martin, Aristotle and Balogh, Peter and Puleri, Daniel F and Gounley, John and Draeger, Erik W and Randles, Amanda}, booktitle={Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis}, pages={1–13}, year={2023} }

Collaborators:

Referenced Research: